## WET inversion of profile RJJ9TO10 in 2000 and in 2021 with version 4.01 with WDVS enabled :

This tutorial assumes that you have already imported successfully shots 97 to 107, into a newly created Rayfract profile. Reopen that profile with your Rayfract software (File|Open). Verify that the Receiver spacing (Header|Profile) is set to 10 meters.

Now open the Station & Shotpoint editor with Header|Station. Then correct the z (elevation) at station nr. -4 to a value of 390.9 meters, as shown here :



Now page forward once with F8. Confirm the prompt regarding change of the coordinates (for station nr. -4). Then enter a z value of 378.1 meters, for station nr. 0. Now page to the last profile station with ALT-END, and enter a z value of 401 meters, for station nr. 29. Then page one station backward with F7. Now enter a z value of 387.3, for station 24. Then close the Station Editor by hitting RETURN once or by clicking on button Interpolate Coordinates and v0.

Now make sure that Depth|Output Horizontal Offset of CMP pos. in meters is checked. If not so, select that menu item to check it. Now initiate the Delta-t-V inversion with Depth|CMP Velocity vs. Depth (Delta-t-V)... Accept the default processing parameters by hitting RETURN. The routine will generate a file named DELTATV.CSV and another file named DELTATV.PAR.

Now start up Surfer and select Grid|Data. Then select file \RAY32\RRJ9TO10\DELTATV.CSV. Change values for the two edit fields in column "# of Lines" for rows "X Direction" and "Y Direction" to 800 and 205, respectively. Note the high resolution which makes sense in order to optimally image the very shallow and sharp contact zone between overburden and basement, as visible on the traveltime curves below. Now click on the OK button, of the "Scattered Data Interpolation" dialog.

Once Surfer announces with three beeps that the gridding / kriging of the data (Delta-t-V output) has been done, select Grid|Blank... and then file \RAY32\RRJ9TO10\DELTATV.GRD. Then select file \RAY32\RRJ9TO10\SEIS32.BLN as Surfer Boundary File. This file specifies the line geometry in Surfer compatible format. Now specify \RAY32\RRJ9TO10\DELTATV.GRD as output file. Confirm the prompt to overwrite the existing DELTATV.GRD.

## Refining Delta-t-V velocity model with tomography processing

Now select Depth|Tomography processing of traveltimes ... . Then click on button "Select" and specify the DELTATV.GRD file as generated above. Activate check box "Correct basement velocities for systematic Delta-t-V error" in addition to "Correct all velocities for systematic Delta-t-V error". Click on button "Accept parameters". Now click on button "Edit velocity smoothing" and then select radio button "Minimal smoothing after each tomography iteration". Click on "Accept parameters. Click on button "Edit grid file generation" and enable option "Write section coverage grids after each iteration". Click on "Accept parameters". Set parameter "Number of WET tomography iterations" to 20. Now click on button "Start tomography processing".

Once the tomography processing has terminated after 20 iterations and about 10 minutes of processing time (on Pentium III processor at 500 MHz), select Refractors/Shot breaks to display picked and synthesized traveltimes (blue crosses) together as shown below :





Subsurface coverage with first break energy, 1D gradient initial model, 100 WET iterations, 2.5% wavepath width, minimal smoothing.

The SEG-2 formatted binary trace data files, ABEM .FIR first break files and the .COR coordinate file are available on our web site as archive

## http://rayfract.com/tutorials/rjj9to10.zip .

Start by creating the profile (as described in e.g. line14.pdf, as available in TUTORIAL.ZIP on our web site), with a receiver spacing of 10 metres and profile database name / DOS subdirectory name RJJ9TO10. Then create a directory named \RAY32\RJJ9TO10\INPUT. Now copy rjj9to10.zip as downloaded via above link into that INPUT subdirectory and unzip it. Then import the .SG2 binary trace data files, with the default spread type of 24 receivers. The ABEM .FIR first break files will be imported automatically at the same time. Then import the coordinate file rjj9to10.cor, with File|Update Station Coordinates... Now proceed as outlined in this tutorial, from the beginning.

For theoretical background of our WET tomography algorithm, see

Wavepath eikonal traveltime inversion: Theory (Gerard T. Schuster and Aksel Quintus-Bosz 1993, GEOPHYSICS VOL. 58 NO. 9 September 1993, P. 1314 – 1323).

For more information regarding our Rayfract<sup>TM</sup> software, please go to our web site

## http://rayfract.com .

Below we show reprocessing of this data with our version 4.01 software with WDVS enabled, done in Jan 2021. We forced the *grid cell size* to 0.5m in *Header*|*Profile* to speed up WDVS enabled WET inversion.

WDVS Wavelength-Dependent Velocity Smoothing is described in

Zelt, C. A. and J. Chen, Frequency-dependent traveltime tomography for near-surface seismic refraction data, Geophys. J. Int., 207, 72-88, 2016



Fig. 1 : Map traces to refractors in Refractor|Shot breaks (right). Pick first and second branch points with CTRL+F1 and CTRL+F2. Press ALT+L to map traces to refractors.



Fig. 2 : Plus-Minus method starting model obtained with Depth|Plus-Minus after mapping traces to refractors as in Fig. 1. Overburden filter 5, Base filter 10 stations.





Fig. 3 : 100 Steepest-Descent WET iterations with starting model Fig. 2. Max. WET velocity limited to 6,000 m/s and minimized WET smoothing (Fig. 8). WDVS engaged at 250Hz (Fig. 7).



Fig. 4 : 100 Steepest-Descent WET iterations with starting model Fig. 6. Max. WET velocity limited to 6,000 m/s and minimized WET smoothing (Fig. 8). WDVS engaged at 250Hz (Fig. 7).



Fig. 6 : Smooth invert|WET with 1D-gradient starting model. Enabled layered XTV inversion.

| Edit WDVS (Zelt & Chen 2016)                                |               |  |  |  |
|-------------------------------------------------------------|---------------|--|--|--|
| Edit parameters for wavelength-dependent velocity smoothing |               |  |  |  |
| use WDVS for forward modeling of traveltimes                |               |  |  |  |
| WDVS frequency                                              | 250 [Hz]      |  |  |  |
| Angle increment                                             | 5 [Degree]    |  |  |  |
| Regard nth node                                             | 3 [node]      |  |  |  |
| Parameters for Cosine-Squared weighting function            |               |  |  |  |
| a : Cosine argument power                                   | 1.000 [power] |  |  |  |
| b : Cosine-Squared power                                    | 1.000 [power] |  |  |  |
| OK Cancel                                                   | Reset         |  |  |  |
|                                                             |               |  |  |  |

Fig. 7 : Model|WDVS Smoothing. Check Model|Fast WDVS Smoothing.

| Edit WET Wavepath Eikonal Traveltime Tomography Parameters   | Edit WET Tomography Velocity Smoothing Parameters                         |
|--------------------------------------------------------------|---------------------------------------------------------------------------|
| Specify initial velocity model                               | Determination of smoothing filter dimensions                              |
| Select D:\ray32\RJJ9To10\Layr_WDVS_250Hz_Jan7\PLUSMODL.GRD   | O Full smoothing after each tomography iteration                          |
| - Stop WET inversion after                                   | <ul> <li>Minimal smoothing after each tomography iteration</li> </ul>     |
| Number of WET tomography iterations : 100 iterations         | Manual specification of smoothing filter, see below                       |
| or BMS error gets below                                      | Smoothing filter dimensions                                               |
|                                                              | Half smoothing filter width : 5 columns                                   |
| or RMS error does not improve for n = 20 iterations          | Half smoothing filter height : 0 arid rows                                |
| or WET inversion runs longer than 100 minutes                | gird fords                                                                |
| WET regularization settings                                  | Suppress artefacts below steep topography                                 |
| Wavepath frequency : 50 Hz Iterate                           | <ul> <li>Adapt shape of filter. Uncheck for better resolution.</li> </ul> |
| Ricker differentiation [-1:Gaussian,-2:Cosine] : -2 times    | Maximum relative velocity update after each iteration                     |
| Wavepath width [percent of one period] : 4.0 percent Iterate | Maximum velocity update : 25.00 percent                                   |
| Wavepath envelope width [% of period] : 0.0 percent          | Smooth after each nth iteration only                                      |
| Min. velocity : 10 Max. velocity : 6000 m/sec.               | Smooth nth iteration : n = 2 iterations                                   |
| Width of Gaussian for one period [sigma] : 3.0 sigma         | Smoothing filter weighting                                                |
| - Gradient search method                                     | Gaussian C Uniform No smoothing                                           |
| Steepest Descent     C Conjugate Gradient                    | Used width of Gaussian 4.5 sigma                                          |
| Conjugate Gradient Parameters                                | Uniform central row weight 100.0 [1100]                                   |
| CG iterations 15 Line Search iters. 3                        | Smooth velocity update before updating tomogram                           |
| Tolerance 0.001 Line Search tol. 0.0010                      | Smooth update Smooth nth 🔽 Smooth last                                    |
| Initial step 0.10 Steepest Descent step                      | Damping of tomogram with previous iteration tomogram                      |
| Edit velocity smoothing Edit grid file generation            | Damping [01] 0.000 Damp before smoothing                                  |
| Start tomography processing Reset Cancel                     | Accept parameters Reset parameters                                        |

Fig. 8 : WET Tomo|Interactive WET main dialog (left). Edit velocity smoothing (right).

Here we give links to .RAR archives with relevant files for above figures :

- SEIS32.\* files for Fig. 3 : <u>http://rayfract.com/tutorials/RJJ9To10\_seis32\_WDVS\_250Hz\_Jan7\_2020.rar</u>
- Surfer files for Fig. 3 : <u>http://rayfract.com/tutorials/Layr\_WDVS\_250Hz\_Jan7.rar</u>
- Surfer files for Fig. 4 : <u>http://rayfract.com/tutorials/Grad\_WDVS\_250Hz\_Jan7.rar</u>



Fig. 9 : Plus-Minus starting model. Overburden filter 5, Base filter 7 stations. Mapped traces to refractors in Fig. 1.



Fig. 10 : 100 Steepest-Descent WET iterations with starting model Fig. 9. Max. WET velocity limited to 6,000 m/s and minimized WET smoothing (Fig. 12). WDVS engaged at 250Hz (Fig. 7).



RJJ9To10 RMS error 4.2%=1.39ms 100 WET itr. 50Hz Width 4.0% initial PLUSMODL.GRD v. 3.33

| Edit WET Wavepath Eikonal Traveltime Tomography Parameters                                         | Edit WET Tomography Velocity Smoothing Parameters     |
|----------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Specify initial velocity model                                                                     | Determination of smoothing filter dimensions          |
| Select D:\ray32\RJJ9To10\Layr_WDVS_SmoothUpdate\PLUSMODL.GRD                                       | C Full smoothing after each tomography iteration      |
| Stop WET inversion after                                                                           | Minimal smoothing after each tomography iteration     |
| Number of WET tomography iterations : 100 iterations                                               | Manual specification of smoothing filter, see below   |
| or RMS error gets below 2.0 percent                                                                | Smoothing filter dimensions                           |
| or BMS error does not improve for n = 20 iterations                                                | Half smoothing filter width : 5 columns               |
| or WET inversion runs longer than     100     minutes                                              | Half smoothing filter height : 0 grid rows            |
| - WET regularization softings                                                                      | Suppress artefacts below steep topography             |
| We in regularization settings           Wavepath frequency :         50         Hz         Iterate | Adapt shape of filter. Uncheck for better resolution. |
| Ricker differentiation [-1:Gaussian,-2:Cosine] : -2 times                                          | Maximum relative velocity update after each iteration |
| Wavepath width [percent of one period] : 4.0 percent Iterate                                       | Maximum velocity update : 25.00 percent               |
| Wavepath envelope width [% of period] : 0.0 percent                                                | Smooth after each nth iteration only                  |
| Min. velocity : 10 Max. velocity : 6000 m/sec.                                                     | Smooth nth iteration : n = 5 iterations               |
| Width of Gaussian for one period [sigma] : 3.0 sigma                                               | Smoothing filter weighting                            |
| Gradient search method                                                                             | Gaussian C Uniform I No smoothing                     |
| Steepest Descent     C Conjugate Gradient                                                          | Used width of Gaussian 3.0 sigma                      |
| Conjugate Gradient Parameters                                                                      | Uniform central row weight 100.0 [1100]               |
| CG iterations 15 Line Search iters. 3                                                              | Smooth velocity update before updating tomogram       |
| Tolerance 0.001 Line Search tol. 0.0010                                                            | Smooth update Smooth nth 🔽 Smooth last                |
| Initial step 0.10 Steepest Descent step                                                            | Damping of tomogram with previous iteration tomogram  |
| Edit velocity smoothing Edit grid file generation                                                  | Damping [01] 0.000 Damp before smoothing              |
| Start tomography processing Reset Cancel                                                           | Accept parameters Reset parameters                    |

Fig. 12 : WET Tomo|Interactive WET main dialog (left). Edit velocity smoothing (right).

SEIS32.\* profile database files for Fig. 10 :

http://rayfract.com/tutorials/RJJ9To10\_seis32\_WDVS\_SmoothUpdate\_Jan6\_2020.rar

Surfer files for Fig. 10 : http://rayfract.com/tutorials/Layr\_WDVS\_SmoothUpdate\_Jan6th\_2020.rar

We thank Goran Mitrovic at Civil Engineering Institute of Croatia for making available above data. Here are his comments on the geological setting of this line : "It is indeed a karstified rock, limestone in the substrate at the site in question. Fault zones can be seen laterally on both sides, and the central part of the profile is interesting due to the inversion of velocities related to the fractured zones of larger caverns in some places."

Copyright (c) 1996-2021 Intelligent Resources Inc. All rights reserved.